集合的三种表示方法_范文大全

集合的三种表示方法

【范文精选】集合的三种表示方法

【范文大全】集合的三种表示方法

【专家解析】集合的三种表示方法

【优秀范文】集合的三种表示方法

问题一:集合与集合的表示方法

数学集合

在数学上是一个基础概念。什么叫基础概念?基础概念是不能用其他概念加以定义的概念,也是不能被其他概念定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。

集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。

现代数学还用“公理”来规定集合。最基本公理例如:

外延公理:对于任意的集合S1和S2,S1=S2当且仅当对于任意的对象a,都有若a∈S1,则a∈S2;若a∈S2,则a∈S1。

无序对集合存在公理:对于任意的对象a与b,都存在一个集合S,使得S恰有两个元素,一个是对象a,一个是对象b。由外延公理,由它们组成的无序对集合是唯一的,记做{a,b}。 由于a,b是任意两个对象,它们可以相等,也可以不相等。当a=b时,{a,b},可以记做或,并且称之为单元集合。

空集合存在公理:存在一个集合,它没有任何元素。

一、集合的概念

一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元。如(1)阿Q正传中出现的不同汉字(2)全体英文大写字母。任何集合是它自身的子集.

元素与集合的关系:

元素与集合的关系有“属于”与“不属于”两种。

集合的分类:

并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}

交集: 以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}

例如,全集U={1,2,3,4,5} A={1,3,5} B={1,2,5} 。那么因为A和B中都有1,5,所以A∩B={1,5} 。再来看看,他们两个中含有1,2,3,5这些个元素,不管多少,反正不是你有,就是我有。那么说A∪B={1,2,3,5}。 图中的阴影部分就是A∩B。

有趣的是;例如在1到105中不是3,5,7的整倍数的数有多少个。结果是3,5,7每项减1再相乘。48个。

无限集: 定义:集合里含有无限个元素的集合叫做无限集

有限集:令N*是正整数的全体,且N_n={1,2,3,……,n},如果存在一个正整数n,使得集合A与N_n一一对应,那么A叫做有限集合。

差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)

注:空集包含于任何集合,但不能说“空集属于任何集合”.

补集:属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={x|x∈U,且x不属于A}

空集也被认为是有限集合。

例如,全集U={1,2,3,4,5} 而A={1,2,5} 那么全集有而A中没有的3,4就是CuA,是A的补集。CuA={3,4}。

在信息技术当中,常常把CuA写成~A。

某些指定的对象集在一起就成为一个集合,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。空集是任何集合的子集,是任何非空集的真子集,任何集合是它本身的子集,子集、真子集都具有传递性。

『说明一下:如果集合 A 的所有元素同时都是集合 B 的元素,则 A 称作是 B 的子集,写作 A B。若 A 是 B 的子集,且 A 不等于 B,则 A 称作是 B 的真子集,写作 A B。

所有男人的集合是所有人的集合的真子集。』

二、集合元素的性质

1.确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为......余下全文>>

问题二:高中数学集合的三种表示方法之图示法

韦恩图

问题三:集合的几种表示方法 要求举例

1,列举法 例:A={1,2,3,4,5} (就是把集合里的数一一列举出来)

2,描述法 如:A={x∈Z|1≤x≤5} 这里集合法的A与描述法的

A属于同一集合

3,图示法(维恩图)用一条封闭的曲线的内部表示一个集合的方法。

集合是由特定元素组成的一个整体,生活中有无穷多的集合。如何来描述这些集合是一个数学中一个常见到的一个问题。其实就如同生活中描述一个事物有不同的方式一样描述一个集合也有很多不同的方式。常见的描述集合的方法有以下几种。

自然语言法:即用平常的自然语言来描述。这种方法常常用在日常人民在生活中的交流当中。比如新学期我们发的教材有语文,数学,外语等。这种描述的方法就是应用的自然语言方法。优点就是通俗易懂,容易和非专业人士之间的交流,缺点是不够精确和严格也不够简洁明了。而数学是一门要求非常严格的学科,所以在数学中一般不用这种语言来描述集合。

数学中常见的描述集合的方法有三种,列举法,描述法和韦恩图法。

列举法比较简单,顾名思义就是把集合中的元素一一列举出来,然后用集合特定的包装大括号给包括起来。当然对于某些无限集合只要把规律体现出来也是可以利用省略号来表示的。比如表示自然数集合用{1,2,3-----}来表示。这种表示集合的优点就是明确的显示集合中包含的元素和个数。所以在表示集合中有着重要的应用,同学们应该真正地去掌握。

描述法是集合特征描述法的简称,是一种重要的描述集合的方法,也是一种比较难于掌握的方法。首先它也是遵守一般集合的书写规则即要用大括号把其他的内容包括起来。内部的形式包括两个部分,中间用竖线隔开,竖线的左边是这个集合中的元素,这点是非常重要的,要加强理解。最常见的有用来表示数,点,方程或不等式的解的变量等。大家要特别注意它们的写法。而竖线的右边则表示的是这个集合中元素所具有的特征和特点,正使这个部分才把一个集合真正的范围给确定下来。常见的表达形式有自然的语言(在数学中不太多见),函数的形式,方程和不等式表达式等。当然就如同前面所说的描述同一件事情有很多中不同的形式,在用描述法表示集合的时候也有不同的形式用来表达同一个集合。我们一般选择用我们最有把握的和最大众化的方式来表达。但是不管形式是怎么样的,我们内心一定要明确地知道这龚集合中的元素有那些,这才是最根本的。

字典词典元帅的童年观后感元帅的童年观后感【范文精选】元帅的童年观后感【专家解析】迂公修屋文言文翻译迂公修屋文言文翻译【范文精选】迂公修屋文言文翻译【专家解析】读书那些事儿读书那些事儿【范文精选】读书那些事儿【专家解析】