纳米陶瓷材料_范文大全

纳米陶瓷材料

【范文精选】纳米陶瓷材料

【范文大全】纳米陶瓷材料

【专家解析】纳米陶瓷材料

【优秀范文】纳米陶瓷材料

问题一:纳米材料有哪些

纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。其中纳米粉末开发时间最长、技术最为成熟,是生产其他三类产品的基础。

纳米粉末

又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料。可用于:高密度磁记录材料;吸波隐身材料;磁流体材料;防辐射材料;单晶硅和精密光学器件抛光材料;微芯片导热基片与布线材料;微电子封装材料;光电子材料;先进的电池电极材料;太阳能电池材料;高效催化剂;高效助燃剂;敏感元件;高韧性陶瓷材料(摔不裂的陶瓷,用于陶瓷发动机等);人体修复材料;抗癌制剂等。

纳米纤维 指直径为纳米尺度而长度较大的线状材料。可用于:微导线、微光纤(未来量子计算机与光子计算机的重要元件)材料;新型激光或发光二极管材料等。

纳米膜

纳米膜分为颗粒膜与致密膜。颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。可用于:气体催化(如汽车尾气处理)材料;过滤器材料;高密度磁记录材料;光敏材料;平面显示器材料;超导材料等。

纳米块体: 是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料。主要用途为:超高强度材料;智能金属材料等。

问题二:什么是纳米陶瓷材料

纳米材料由于具有许多独特的优异性能而成为现代材料科学的研究热点。目前在纳米粉末的制备技术方面取得了很大进展,各种纳米粉末已开始工业化生产并获得日益广泛的应用。然而,用纳米粉末制备纳米陶瓷,由于纳米粉末的活性很高,高温烧结时晶粒生长很快,绝大多数情况下获得的不是纳米陶鼎,而是亚微米甚至微米陶瓷。只有采用热压、热等静压烧结或者小试样的快速等温烧结,才可能获得致密烧结的块体纳米陶瓷。在这种工艺条件下,一是对烧成设备的技术要求很高,二是很难制备复杂形状和尺寸的纳米陶瓷制品。因此,开发一种高性能低成本的纳米陶瓷制备新技术,是使纳米陶瓷制品实现产业化并获得广泛应用的关键。

主要从事纳米陶瓷制备新技术和工程陶瓷磨擦学性能评价方面研究的湖南大学博士生导师肖汉宁教授,在低成本高可靠性纳米陶瓷制备新工艺新技术的研究方面取得了具有产业化前景的重要研究成果,提出了高温自润滑耐磨陶瓷的设计原则并成功地研制了高温自润滑纳米陶瓷。该技术生产的纳米陶瓷制品可在高温、腐蚀、无润滑等恶劣环境下用作耐磨结构材料,如研磨体、陶瓷轴承、机械密封件、纺织瓷件、管道、阀门、耐磨衬板等,对提升传统耐磨结构材料的可靠性和技术含量,推动机械制造、化工、纺织等相关产业的技术进步有积极意义。该技术利用工业废渣来制备纳米陶瓷,是一项集新材料研制、固体废弃物再生利用和环境保护于一体的具有显著社会经济效益和推广应用价值的课题,对提高冶金工业废渣的利用率和附加值,降低其对环境污染的压力具有重要意义。现在主要的生产公司是深圳市汭美珂科技发展有限公司,产品通过了美国食品和药物管理局的FDA鉴定合格的安全产品,是一个值得信赖的公司。

问题三:生活用品哪些是汭米材料

1、 天然纳米材料

海龟在美国佛罗里达州的海边产卵,但出生后的幼小海龟为了寻找食物,却要游到英国附近的海域,才能得以生存和长大。最后,长大的海龟还要再回到佛罗里达州的海边产卵。如此来回约需5~6年,为什么海龟能够进行几万千米的长途跋涉呢?它们依靠的是头部内的纳米磁性材料,为它们准确无误地导航。

生物学家在研究鸽子、海豚、蝴蝶、蜜蜂等生物为什么从来不会迷失方向时,也发现这些生物体内同样存在着纳米材料为它们导航。

2、 纳米磁性材料

在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十倍。超顺磁的强磁性纳米颗粒还可制成磁性液体,用于电声器件、阻尼器件、旋转密封及润滑和选矿等领域。

3、 纳米陶瓷材料

传统的陶瓷材料中晶粒不易滑动,材料质脆,烧结温度高。纳米陶瓷的晶粒尺寸小,晶粒容易在其他晶粒上运动,因此,纳米陶瓷材料具有极高的强度和高韧性以及良好的延展性,这些特性使纳米陶瓷材料可在常温或次高温下进行冷加工。如果在次高温下将纳米陶瓷颗粒加工成形,然后做表面退火处理,就可以使纳米材料成为一种表面保持常规陶瓷材料的硬度和化学稳定性,而内部仍具有纳米材料的延展性的高性能陶瓷。

4、纳米传感器

纳米二氧化锆、氧化镍、二氧化钛等陶瓷对温度变化、红外线以及汽车尾气都十分敏感。因此,可以用它们制作温度传感器、红外线检测仪和汽车尾气检测仪,检测灵敏度比普通的同类陶瓷传感器高得多。

5、 纳米倾斜功能材料

在航天用的氢氧发动机中,燃烧室的内表面需要耐高温,其外表面要与冷却剂接触。因此,内表面要用陶瓷制作,外表面则要用导热性良好的金属制作。但块状陶瓷和金属很难结合在一起。如果制作时在金属和陶瓷之间使其成分逐渐地连续变化,让金属和陶瓷“你中有我、我中有你”,最终便能结合在一起形成倾斜功能材料,它的意思是其中的成分变化像一个倾斜的梯子。当用金属和陶瓷纳米颗粒按其含量逐渐变化的要求混合后烧结成形时,就能达到燃烧室内侧耐高温、外侧有良好导热性的要求。

6、纳米半导体材料

将硅、砷化镓等半导体材料制成纳米材料,具有许多优异性能。例如,纳米半导体中的量子隧道效应使某些半导体材料的电子输运反常、导电率降低,电导热系数也随颗粒尺寸的减小而下降,甚至出现负值。这些特性在大规模集成电路器件、光电器件等领域发挥重要的作用。

利用半导体纳米粒子可以制备出光电转化效率高的、即使在阴雨天也能正常工作的新型太阳能电池。由于纳米半导体粒子受光照射时产生的电子和空穴具有较强的还原和氧化能力,因而它能氧化有毒的无机物,降解大多数有机物,最终生成无毒、无味的二氧化碳、水等,所以,可以借助半导体纳米粒子利用太阳能催化分解无机物和有机物。

7、纳米催化材料

纳米粒子是一种极好的催化剂,这是由于纳米粒子尺寸小、表面的体积分数较大、表面的化学键状态和电子态与颗粒内部不同、表面原子配位不全,导致表面的活性位置增加,使它具备了作为催化剂的基本条件。

镍或铜锌化合物的纳米粒子对某些有机物的氢化反应是极好的催化剂,可替代昂贵的铂或钯催化剂。纳米铂黑催化剂可以使乙烯的氧化反应的温度从600 ℃降低到室温。

8、 医疗上的应用

血液中红血球的大小为6 000~9 000 nm,而纳米粒子只有几个纳米大小,实际上比红血球小得多,因此它可以在血液中自由活动。如果把各种有治疗作用的纳米粒子注入到人体各个部位,便可以检查病变和进行治疗,其作用要比传统的打针、吃药......余下全文>>

问题四:纳米陶瓷的粉体

纳米陶瓷粉体是介于固体与分子之间的具有纳米数量级(0.1~100nm)尺寸的亚稳态中间物质。随着粉体的超细化,其表面电子结构和晶体结构发生变化,产生了块状材料所不具有的特殊的效应。具体地说纳米粉体材料具有以下的优良性能:极小的粒径、大的比表面积和高的化学性能,可以显著降低材料的烧结温度、节能能源;使陶瓷材料的组成结构致密化、均匀化,改善陶瓷材料的性能,提高其使用可靠性;可以从纳米材料的结构层次(l~100nm)上控制材料的成分和结构,有利于充分发挥陶瓷材料的潜在性能。另外,由于陶瓷粉料的颗粒大小决定了陶瓷材料的微观结构和宏观性能。如果粉料的颗粒堆积均匀,烧成收缩一致且晶粒均匀长大,那么颗粒越小产生的缺陷越小,所制备的材料的强度就相应越高,这就可能出现一些大颗粒材料所不具备的独特性能。

问题五:纳米材料的优缺点都有那些啊? 40分

问题六:纳米氧化铝在陶瓷材料、电子工业、生物医药等方面有广阔的应用前景,它可通过硫酸铝铵晶体热分解得到.[

由工艺流程可知,加入过氧化氢将溶液中Fe2+氧化为Fe3+,加入氨水调节溶液PH值,Fe3+使转化为Fe(OH)3,过滤后滤液主要含硫酸铵,氢氧化铝与硫酸混合反应生成硫酸铝溶液,再将硫酸铵和硫酸铝溶液混合反应,经蒸发浓缩、冷却结晶、过滤、洗涤、干燥等最终得到硫酸铝铵晶体;(1)①由工艺流程可知,加入过氧化氢将溶液中Fe2+氧化为Fe3+,加入氨水调节溶液PH值,Fe3+使转化为Fe(OH)3,过滤后的滤液中可能含有Fe3+,取少许滤液于试管中,加几滴KSCN溶液,若溶液不变红色,则杂质已除尽.故答案为:取少许滤液于试管中,加几滴KSCN溶液,若溶液不变红色,则杂质已除尽;②由工艺流程可知,流程中“分离”是从溶液中获得晶体,操作为蒸发浓缩、冷却结晶、过滤、洗涤、干燥等,故答案为:蒸发浓缩;冷却结晶;(2)取4.53g硫酸铝铵晶体的物质的量为4.53g906g/mol=0.005mol,4.53g硫酸铝铵晶体中水的质量为0.005mol×24×18g/mol=2.16g,加热400℃时固体质量减少△m=4.53g-2.46g=2.07g<2.16g剩余固体中结晶水的物质的量为2.16g?2.07g18g/mol=0.005mol.剩余固体中n[(NH4)2Al2(SO4)4]:n(H2O)=0.005mol:0.005mol=1:1,故400℃时剩余固体成分的化学式为(NH4)2Al2(SO4)4?H2O.答:400℃时剩余固体成分的化学式为(NH4)2Al2(SO4)4?H2O.

问题七:(2010?福州)请仔细阅读下文,并回答文后问题.纳米陶瓷纳米陶瓷作为高新科技材料应用广泛.贴于“神舟

(1)因为纳米陶瓷耐高温的特点,“神舟七号”飞船与空气摩擦所产生的热量达不到陶瓷的熔点,所以飞船舱不至于被烧毁.故答案为:耐高温.(2)由材料可知:采用氧化锆材料精制而成的纳米陶瓷刀,完全无磁性;硬度高,其耐磨性是金属刀的60倍.故答案为:不能,硬度.(3)观察图象知:在磨损时间相同的情况下,曲线c所显示的磨损程度小,这与纳米陶瓷刀的耐磨性好相符合.故答案为:c.

问题八:纳米技术简介,用途与发展前景?

纳米技术是一门高新技术,它对21世纪材料科学和微行器件技术的发展具有重要影响。为了解纳米技术的发展状况,记者走访了英国牛津大学材料系纳米材料专家保尔·华伦博士。

华伦说,纳米技术是当前全球都在谈论的热门话题。所谓纳米技术,是指用数千个分子或原子制造新型材料或微型器件的科学技术。纳米技术涉及的范围很广,纳米材料只是其中的一部分,但它却是纳米技术发展的基础。牛津大学材料系目前研究的纳米技术项目有40多个,其中主要的有超细薄膜、碳纳米管、纳米陶瓷、金属纳米晶体和量子点线等。

超细薄膜的厚度通常只有1纳米-5纳米,甚至会做成1个分子或1个原子的厚度。超细薄膜可以是有机物也可以是无机物,具有广泛的用途。如沉淀在半导体上的纳米单层,可用来制造太阳能电池,对开发新型清洁能源有重要意义;将几层薄膜沉淀在不同材料上,可形成具有特殊磁特性的多层薄膜,是制造高密度磁盘的基本材料。碳纳米管是由碳60分子经加工形成的一种直径只有几纳米的微型管,是纳米材料研究的重点之一。与其它材料相比,碳纳米管具有特殊的机械、电子和化学性能,可制成具有导体、半导体或绝缘体特性的高强度纤维,在传感器、锂离子电池、场发射显示、增强复合材料等领域有广泛应用前景,因而受到工业界的普遍重视。目前,碳纳米管虽仍处于研究阶段,但许多研究成果已显示出良好的应用前景。陶瓷材料在通常情况下具有坚硬、易碎的特点,但由纳米超微颗粒压制成的纳米陶瓷材料却具有良好的韧性,有的可大幅度弯曲而不断裂,表现出金属般的柔韧性和可加工性。

纳米技术在现代科技和工业领域有着广泛的应用前景。比如,在信息技术领域,据估计,再有10年左右的时间,现在普遍使用的数据处理和存储技术将达到最终极限。为获得更强大的信息处理能力,人们正在开发DNA计算机和量子计算机,而制造这两种计算机都需要有控制单个分子和原子的技术能力。

传感器是纳米技术应用的一个重要领域。随着纳米技术的进步,造价更低、功能更强的微型传感器将广泛应用在社会生活的各个方面。比如,将微型传感器装在包装箱内,可通过全球定位系统,可对贵重物品的运输过程实施跟踪监督;将微型传感器装在汽车轮胎中,可制造出智能轮胎,这种轮胎会告诉司机轮胎何时需要更换或充气;还有些可承受恶劣环境的微型传感器可放在发动机汽缸内,对发动机的工作性能进行监视。在食品工业领域,这种微型传感器可用来监测食物是否变质,比如把它安装在酒瓶盖上就可判断酒的状况等。

在医药技术领域,纳米技术也有着广泛的应用前景。如用纳米技术制造的微型机器人,可让它安全地进入人体内对健康状况进行检测,必要时还可用它直接进行治疗;用纳米技术制造的"芯片实验室"可对血液和病毒进行检测,几分钟即可获得检测结果;科学家还可以用纳米材料开发出一种新型药物输送系统,这种输送系统是由一种内含药物的纳米球组成的,这种纳米球外面有一种保护性涂层,可在血液中循环而不会受到人体免疫系统的攻击,如果使其具备识别癌细胞的能力,它就可直接将药物送到癌变部位,而不会对健康组织造成损害。

除此之外,纳米技术在工业制造、国防建设、环境监测、光学器件和平面显示系统等领域也有广泛的用途,对21世纪的科技发展具有重要作用。

为了对纳米技术有一个较全面的印象,华伦博士带记者参观了纳米材料实验室。由于纳米材料的结构很小,在自然光下肉眼无法看到,所以需要借助显微镜来观察和操作。走进实验室,首先看到的是一台被称作"纳米刀"的仪器。参观时,研究人员正在用它在一个电子器件材料表面上......余下全文>>

问题九:什么是超效纳米陶瓷隔热保温材料

主要还是纳米材料带孔状的材料,才能隔热保温效果,然后附加上纳米二氧化钛等反射的材料,这样才能实现

字典词典安然握住满分作文安然握住满分作文【范文精选】安然握住满分作文【专家解析】关于启用公章的通知关于启用公章的通知【范文精选】关于启用公章的通知【专家解析】有关双十一的论文有关双十一的论文【范文精选】有关双十一的论文【专家解析】